17 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Design, synthesis, And applications of galectin modulators in human health

    No full text
    Over the last decade, the family of galectin proteins has been identified as key regulators of important biological processes. They bind β-D-galactopyranoside residues in glycoconjugates, and by presenting multiple binding sites, within one galectin or by forming dimers or multimers, they can cross-link glycoproteins and form galectin-glycoprotein lattices. Such lattices formed on the cell surface or in vesicles have been shown to control, for example, surface residence time and signaling by receptors. Hence, compounds modulating galectin binding to their glycoprotein ligands are of potential clinical interest. This chapter describes the design and development of disubstituted thiodigalactoside derivatives that form optimal interactions with the galectin-3 binding site resulting in double-digit nanomolar affinities. Studies are discussed in which such galectin-3-modulating compounds have been important in elucidating galectin-3 mechanisms, including galectin-3 trafficking, cancer, inflammation, fibrosis, and angiogenesis. Medically relevant models using the galectin-3 modulators in characterizing macrophage alternative activation and chronic inflammation, myofibroblast activation and fibrosis, and ocular angiogenesis are discussed in more detail. In summary, the high galectin-3 affinity and definitive effects in relevant models of the disubstituted thiodigalactosides identify them as promising as lead compounds for drug development, albeit leaving a challenge in terms of optimizing PK/ADME properties

    Consensus guidelines for the use and interpretation of angiogenesis assays

    No full text
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
    corecore